Portrait of Stefan Stojanov

Anh N. Thai

Anh.Thai@dolby.com

Twitter GitHub Google Scholar LinkedIn CV

I am a Senior AI Multimodal Researcher at Dolby Laboratories.

Previously, I was a PhD student in the School of Interactive Computing (IC) at Georgia Institute of Technology, advised by Professor James M. Rehg and Professor Judy Hoffman. Prior to PhD, I graduated with a B.S. in Computer Science from Georgia Tech. My research centers around understanding 3D scenes and objects.

In the past years, I have interned with Thomas Funkhouser and Leonidas Guibas at Google Deepmind, Matt Feiszli at FAIR (Meta AI), and Eddy Ilg at Meta Reality Labs.

Publications & Preprints

MEBench: A Novel Benchmark for Understanding Mutual Exclusivity Bias in Vision-Language Models

Anh Thai, Stefan Stojanov, Zixuan Huang, Bikram Boote, James M. Rehg.

preprint, 2025

paper


SplatTalk: 3D VQA with Gaussian Splatting thumbnail

SplatTalk: 3D VQA with Gaussian Splatting

A self-supervised 3D Gaussian-based method for large-scale zero-shot 3D VQA, trained only from multi-view RGB images.

Anh Thai, Songyou Peng, Kyle Genova, Leonidas Guibas, Thomas Funkhouser.

ICCV 2025 - poster

paper / code / project page


Symmetry Strikes Back: From Single-Image Symmetry Detection to 3D Generation thumbnail

Symmetry Strikes Back: From Single-Image Symmetry Detection to 3D Generation

A zero-shot single-image 3D symmetry detector that can improve 3D generation.

Xiang Li, Zixuan Huang, Anh Thai, James M. Rehg.

CVPR 2025 - highlight

paper / project page


3 × 2: 3D Object Part Segmentation by 2D Semantic Correspondences thumbnail

3 × 2: 3D Object Part Segmentation by 2D Semantic Correspondences

A novel method that leverages 2D foundation models for few-shot 3D object part segmentation.

Anh Thai, Weiyao Wang, Hao Tang, Stefan Stojanov, James M. Rehg, Matt Feiszli.

ECCV 2024 - poster

paper / project page


ZeroShape thumbnail

ZeroShape: Regression-based Zero-shot Shape Reconstruction

SOTA 3D shape reconstructor with high computational efficiency and low training data budget.

Zixuan Huang*, Stefan Stojanov*, Anh Thai, Varun Jampani, James M. Rehg

CVPR 2024 - poster

paper / code / project page / demo


Low-shot Object Learning thumbnail

Low-shot Object Learning with Mutual Exclusivity Bias

Mutual Exclusivity Bias enables fast learning of objects that generalizes.

Anh Thai, Ahmad Humayun, Stefan Stojanov, Zixuan Huang, Bikram Boote, James M. Rehg

NeurIPS 2023 – Datasets and Benchmarks Track

paper / code / project page


ShapeClipper thumbnail

ShapeClipper: Scalable 3D Shape Learning via Geometric and CLIP-based Consistency

CLIP and geometric consistency constraints facilitate scalable learning of object shape reconstruction.

Zixuan Huang, Varun Jampani, Anh Thai, Yuanzhen Li, Stefan Stojanov, James M. Rehg

CVPR 2023 – poster

paper / code / project page / video


Learning Dense Object Descriptors thumbnail

Learning Dense Object Descriptors from Multiple Views for Low-shot Category Generalization

Dense feature-level self-supervised learning from multiple camera views without any category labels leads to representations that can generalize to novel categories.

Stefan Stojanov, Anh Thai, Zixuan Huang, James M. Rehg

NeurIPS 2022 – poster

paper / code / project page / poster / video


Planes vs. Chairs thumbnail

Planes vs. Chairs: Category-guided 3D Shape Learning without any 3D Cues

A 3D-unsupervised model that learns shapes of multiple object categories at once.

Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, James M. Rehg

ECCV 2022 – poster

paper / code / project page / poster / video


Continual 3D Shape Reconstruction thumbnail

The Surprising Positive Knowledge Transfer in Continual 3D Object Shape Reconstruction

Continual learning of 3D shape reconstruction does not suffer from catastrophic forgetting as much as discriminative learning tasks.

Anh Thai, Stefan Stojanov, Zixuan Huang, James M. Rehg

3DV 2022 – poster

paper / code


Using Shape to Categorize thumbnail

Using Shape to Categorize: Low-Shot Learning with an Explicit Shape Bias

Learning representations to generalize based on 3D shape and then learning to map images into them leads to improved low-shot generalization.

Stefan Stojanov, Anh Thai, James M. Rehg

CVPR 2021 – poster

paper / code / dataset / project page


3D Reconstruction from Single Images thumbnail

3D Reconstruction of Novel Object Shapes from Single Images

An implicit SDF representation-based method for single-view 3D shape reconstruction.

Anh Thai*, Stefan Stojanov*, James M. Rehg

3DV 2021 – oral

paper / code / project page


Incremental Object Learning thumbnail

Incremental Object Learning from Contiguous Views

Repetition of learned concepts in continual learning ameliorates catastrophic forgetting.

Stefan Stojanov, Anh Thai*, Samarth Mishra*, James M. Rehg

CVPR 2019 – oral – Best Paper Award Finalist

paper / code / dataset / video


Design inspired by the websites of Georgia Gkioxari and Jon Barron